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Abstract 

 In this paper we study the relationship between a very classical algebraic object 

associated to a filtration of topological spaces, namely a spectral sequence, and a 

more recently invented object that has found many applications – namely, its 

persistent homology groups. We show the existence of a long exact sequence of 

groups linking these two objects and using it derive formulas expressing the 

dimensions of each individual groups of one object in terms of the dimensions of 

the groups in the other object. The main tool used to mediate between these objects 

is the notion of exact couples first introduced by Massey in 1952. 
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Introduction 

A very classical technique in algebraic topology for computing topological 

invariants of a space X is to consider a filtration F of X where the successive spaces 

FsX capture progressively more and more of the topology of X. For example, in 

case X is a CW-complex one can take for FpX the p-th skeleton skp(X) consisting 

of all cells of dimension at most p. More generally, given a cellular map f : X → Y , 

one can take for FpX the inverse image under f of skp(Y ). One then associates to 

this sequence a sequence of algebraic objects which in nice situations is expected to 

“converge” (in an appropriate sense) to the topological invariant (such as the 

homology or cohomology groups) associated to X itself, directly computing which 

is often an intractable problem. This sequence of algebraic approximations is called 

a spectral sequence associated to the filtration F, and was first introduced by Leray 

[12] in 1946. Spectral sequences are now ubiquitous in mathematics. A typical 

application which is common in discrete geometry, as well as in quantitative real 

algebraic geometry, is to use the initial terms of a certain spectral sequence to give 
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upper bounds on the topological complexity (for example, the sum of Betti 

numbers) of the object of interest X. 

 

EXACT COUPLES AND FIVE-TERM SEQUENCES 

Definition 1: A graded module is a sequence of modules M =  : .
p

M p Z If 

 p
M M and  p

N N are graded modules and a  is a fixed integer, then a 

sequence of homomorphisms  :
p p p a

f f M N


  is a map of degree a . One 

writes : .f M N  

A complex 
1

... ...
pd

p p
C C C


    determines a graded module 

 :
p

C C p Z  if one ignores the differentiation  : .
p

d d p Z  The map 

:d C C has degree-1. If ' '( , )C d is another complex, a chain map ':f C C

gives a map of degree 0 (with fd=df’ ), while a homotopy is a certain type of 

map of degree +1. A second example of a graded module is the homology of 

a complex  *
: ( ) ( ) : .

p
C H C H C p Z  One may reverse this procedure: 

given a graded module  : ,
p

A p Z define a complex 

1
... ...

pd

p p
A A A


     

in which each 0;
p

d  one says A is a complex with zero differentiation. 

Exercises: Degrees add under composition: if :f M N has degree a  and 

:g N K has degree b, then :gf M K is a map of degree .a b  
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All graded modules (over a fixed ring) and all maps having a degree 

comprise a category. Note that 

Hom( , ) Hom( , )
p p a

a Z p

M N M N




 
  

 
  

Recall a mnemonic introduced when we first saw long exact sequences: 

exact triangles. If 0 0
gf

A B C    is a short exact sequence of complexes, 

then the long exact sequence may be written 

 

Regarding the vertices as graded modules, the maps 
*

f and 
*

g have degree 0 

and  has degree-1. Conversely, given any exact triangle, one may write 

down a long exact sequence of he knows the degrees of the maps. 

Definition 2: A bigraded module is a doubly indexed family of modules 

 ,
: ( , ) .

p q
M M p q Z Z   If  .p q

M M and  .p q
N N are bigraded 

modules and if ( ,a b ) is a fixed ordered pair of integers, then a family of 

homomorphism  '

. . ,
:

p q p q p a q b
f f M N

 
  is a map of bidegre ( , ).a b  One 

writes : .f M N  
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Exercises: Bidegrees add under composition: if :f M N has bidegree 

( , )a b and :g N K has bidegree ' '( , ),a b then :gf M K has bidegree 

' '( , ).a a b b   

All bigraded modules (over a fixed ring) and all maps having a 

bidegree comprise a category. 

In the category of bigraded modules, there are subobjects and quotient 

objects. If 
. .p q p q

M N for all , ,p q then  .p q
M M is a (bigraded) submodule 

of  .
;

p q
N N visibly, the inclusion map M N has bidegree (0,0). Define 

the (bigraded) quotient module N/M as  . .
/ ;

p q p q
N M the natural map 

/N N M also has bidegree (0,0). 

There is a consequence of this elementary definition. Given 

:f M N with bidegree ( , ),a b imf should be a (bigraded) submodule of N; 

what is (imf)p.q? Since 
. .

( ) ,
p g p q

imf N we are forced to define 

. , , , . .
( ) ( )  ( )

p q p a q b p a q b p a q b p q
imf f M im f N

     
    

(Thus, (imf )p.q is not int fp.q), which lies in 
. ).p a q b

N
 

On the other hand, there is 

no problem with indices of ker :f if one defines 

. ,
(ker ) ker( ),

p q p q
f f  

then ker f is a (bigraded) submodule of M. It is now clear how to define 

exactness of a sequence of bigraded modules. 
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 We defer giving examples of bigraded modules; later, we shall define a 

“bicomplex” which will determine bigraded modules in much the same way 

that a comlex determines graded modules (ignore differentiation; homology). 

Definition 3: An exact couple is a pair of bigraded modules D and E, and 

maps , ,x    (each of some bidegree) such that there is exactness at each 

vertex of the triangle 

 

 Obviously, an exact couple generalizes the notion of exact triangle 

(since one does not generalize merely for the sake of generalization, there are 

not three distinct bigraded modules at thevertices; in practice, an exact couple 

is what one encounters). Given an exact couple    , ,
, ,

p q p q
D D E E  and 

maps , ,x   of bidegress
' ' '( , ),( , ),( , ),a a b b c c respectively, one may write down 

a long exact sequence for each fixed q: 

, . . , ,
... ...

xi

p c q c p q p a q a p a b q a b
E D D E

  

       
      

Conversely, given infinitely many long exact sequences as above, they may 

be assembled into one exact couple.  

 Let us now use this barrage of notation (actually, a clever organization 

of a maze of data, due to Massey) to obtain concrete results. The next theorem 
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is due to Kreimer, while the notion of acyclicity when dealing with  

compositefunctors was first formulated by Grothendieck. 

 We maintain our (too restrictive) hypothesis that all functors are 

additive functors between categories of modules (one may replace module 

categories by certain more general categories). 

Definition 4: Let :B R   be a functor of either variance. A module B in  is 

right F-acyclic if ( ) 0pR F B  for all 1,p  where pR F is the pth right derived 

functor of F: a module B in  is left F-acyclic if ( ( 0
p

L F B  for all 1.p 

where 
p

L F is the pth left derived functor of F. 

 If F is covariant, recall that ( ) ( ),P p

B
R F B H FE where 

B
E is a deleted 

injective resolution of B. It follows from that every injective module is right 

F-acyclic. 

Exercises: Every projective module is left F-acyclic for any co-variant 

functorF, and is right F-acyclic for any contravariant functorF. 

  

If ,
R

F A  then every flat module 
R
B is left F-acyclic. 

 A composite of functors may give an exact couple. Observe first that if 

: ,G  then ( )nR G A for every module A in 
1

(if ... ...
nGd

n n
u X GX


  

is a complex in N, whence kerGdn/im 1
).

n
Gd


  

Theorem 5:Let :E R B  and :F B C be functors such that F is left exact 

and whenever E is injective in R , then GE is right F-acyclic. For each 
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module A in R , choose an injective resolution  0 10 ...A E E     and 

define 

1ker( ).q q qZ GE GE    

Then there exists an exact couple with 

  
.

( )( ( ))P q

p q
E R F R G A   if 0, 0.p q   

  0    otherwise 

  

1

,

( ) if 0, 1,

( ) if 1, 1,

0 ,

p q

p q

p q

R F Z p q

D R FG A p q

otherwise





 


  



 

and maps :  D D of bidegree ( 1,1), : D E  of bidegree (1,-1), and

:y E D E D of bidegree (1,0). 

Remarks: 1. Visualize a bigraded module as a family of modules, one sitting 

on each lattice point in the p-q plane. Thus, E lives in the first quadrant and D 

lives above the line q=1 and to the right of p=-1. 

2. The basic idea is just to assemble the long exact sequences arising 

from the obvious short exact sequences [1] and [4] below. 

Proof: Abbreviate , , ( )p p pR G R F R FG to , ,( ) ,p p pG F FG respectively. Our task 

is to exhibit, for each 0,q  an exact sequence 

  
1. 1 0. 1 1. 2 0. 1

...
q q q q

E D D E
     

     

   
. 1 1, 2 . 1

...
p q p q p q

D D E
   

     

By definition of E and D, we want exact sequences 

  
1 1 10 ( ) ( ) ...q q qF Z FG A F G A      

   
1 1 1( ) ...p q p q p pF Z F Z F G A       
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 Now qG A is just the qth homology of the complex

1... ...q qGE GE    . We have already denoted the q-cycles of this 

complex by ;qZ denote the q-boundaries, im 1( ),q qGE GE  by .qB There are 

short exact sequences  

[1]    
10 0q q qZ GE B

      

which gives rise to exact sequences (since F is left exact and GE
q
 is right F-

acyclic) 

[2] 1 10 0,        all   0,q q q qFZ FGE FB F Z q       

and isomorphisms 

[3] 
~1 1 ,      all 1.   0.p q p qF B F Z p q      

The definition of homology gives short exact sequences 

[4]    1 1 10 0.
vq q qB Z G A

       

which yields long exact sequences 

1 1 1 1 1 1 1 1 10 ( ) ( ) ...q q q q q qFB FZ F G A F B F Z F G A             

Using [3] to replace each term 1p qF B  by its isomorphic copy 1 ,p qF Z for 

1,p  almost leaves us with the desired exact sequences; only the first two 

terms are not correct. 

 Consider the diagram 
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where the first column is the end of the exact sequence [2], the map h is the 

composite 1 1( ),q q qF F F GE B Z     and ker .W co h Commutativity 

of the top square and exactness of the columns provide a unique map 

1 qF Z W  making the bottom square commute; that 0Fv h  implies the 

existence of a map 1( )qW F G A which makes the remaining square 

commute. Exactness of the middle row implies, by diagramchasing exactness 

of the bottom row. It remains to identify W with 1( ) .qFG A
 

Now 1 1 2ker( ).q q qZ GE GE    so that left exactness of F gives 

1 1 2ker( ).q q qFZ FGE FGE    Therefor 

1 1 1coker( / im( )q q q q qW FGE FZ FZ FGE FZ       

    
1 2 1ker( ) / im( ).q q q qFGE FGE FGE FZ      

Using left exactness of F once again. 1 1q qZ GE  implies 1 1,q qFZ FGE 

and thus 
1 1im( ) im( ).q q q qFGE FZ FGE FZ    Therefore, 

1 1( ) ( ) .q q

A
W H FGE FG A    
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Theorem6.(Cohomology Five-Term Sequence):Let :G U B  and 

:F B C be left exact functors such that E injective in U implies GE is right 

F-acyclic. Then there is an exact sequence 

1 1 1 2 20 ( )( ) ( ) ( ) ( )( ) ( )R F GA R FG A F R GA R F GA R FG A      

for every module A in U. 

Proof:We return to the abbreviated notation above. Consider the exact 

sequences in for 0q  and 1q  : 

1 0 1 1 2 1 10 ( ) ( ) ...F Z FG A F G A F GA F Z       

and 

  1 1 20 ( ) ...F Z FG A    

Just splice these two sequences together at 1 1,F Z and remember that 

0 0 1ker( ) ,Z GE GE GA   for G is left exact. 

Remark: If G is not left exact, one must replace GA by 0( )R G A in the 

sequence. 

 Theorem 7.Let :G U B and :F B C be leftexact functors such that 

E injective in U implies GE is right F-acyclic. If A is a module in U with 

( ) 0iR G A for 1 ,i q  then there is an exact sequence 

1 10 ( )( ) ( ) ( ) ( )( ) ( ) .q q q q qR F GA R FG A F R GA R F GA R FG A       

Proof:Let us return once again to the abbreviated notation for derived factors. 

We shall only prove the special (though most important) case when 1 0G A  
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(the rest being an exercise for the reader). Consider the exact sequences in 

Theorem 11.1 for 0,1,q  and 2: 

 1 0 1 1 2 0 1 1 1 10 ( ) ( ) ( ) ...,F Z FG A F G A F Z F Z F G A        

 
1 1 2 2 2 1 1 20 ( ) ( ) ...,F Z FG A F G A F Z F Z       

and 

 1 2 30 ( ) ...F Z FG A    

Splice the last two sequences together at 1 2F Z to obtain exactness of  

1 1 2 2 2 1 30 ( ) ( ) ( ) .F Z FG A F G A F Z FG A      

Since 1 0,G A the first sequence ( 0)q  gives an isomorphism 

2 0 1 1~ .F Z F Z  

Recalling that 0 ,Z GA the sequence now begins with 2( ).F GA Let us deal 

with the fourth term 2 1.F Z Since 1 1 1/ ,G A Z B the hypothesis gives 1 1Z B

and hence 2 1 2 1.F Z F B But isomorphism [3] gives 2 1 3 0 3~ .F B F Z F GA  

An important use of  this last result occurs in the cohomology of 

algebras, involving Hilbert’s “Theorem 90” and the Brauer group. 

It should be clear that the proofs just given dualize: we merely state the 

results for right exact covariant functors. 

Theorem 8. (Homology Five-Term Sequence): Let :G U B and 

:F B C be right exact functors such that P projective in U implies GP is 

left F-acyclic. Then there is an exact sequence 

 
2 2 1 1
( ) ( )( ) ( ) ( ) ( )( ) 0L FG A L F GA F LGA FG A LG GA      
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for every module A in U. Moreover, if ( ) 0 for 1 .
i

LG A i q   then there is an 

exact sequence 

1 1
( ) ( )( ) ( ) ( ) ( )( . ) 0.

q q q q q
L FG A L F GA F L GA L FG A L F G A

 
      

Let us illustrate these general results. Assume  is a group with normal 

subgroup N. Clearly, every  -module A may be regarded as an N-module, so 

that HomN (Z,A) is defined. Recall  

HomN  ( , ) :   for all .NZ A A a A n a a n N      

For a  -module A, the module A
N
 is actually a / module : if N x   has 

coset / ,X N  define 

. . ,      NX a x a a A   

(one checks this is well defined). Therefore HomN (Z,), and its derived 

functors: Ext ( ,) ( ,)
N

i i

Z
Z H N  are functors from   -modules to  /N-

modules.  

What is the action of / N  on ( , )iH N A  for a  -module A? Take a 

projective resolution of Z 

1 0
P ... 0P P Z      

(which is automatically N-projective) and let us compute ( , )iH N A  by 

examining the complex HomN ( , ).
Z

P A  tells us a reasonable way to make each 

HomN ( , )
i

P A  into a / N module. 

1( )( ) . ( ),     / ,    .
i

Xf b x f x b x N b P    
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Hence, ( , )iH N A  becomes a / N   module by 

( ) . ,
i i i i

X z B X z B    

Where Hom ( , )
i N i

z P A  is a cycle and 
i

B  is the submodule of boundaries. 

(Observe that the action of coincides with the action of / N  on HomN (Z,A) 

given above.) 

 A similar discussion shows how / N  acts on the homology groups 

( , )
i

H N A  when A is module:  

1( ) ,        / ,        .
i

X b a bx xa X N b P      

Remark: One may prove [Gruenberg,1970,p.151]  that if ( )N Z   and A is 

trivial,  then ( . )pH N A  and ( , )
p

H N A  are / trivialN   for all p. The 

proof of this is not difficult, but involves a longish digression. This fact will 

be used several times in the sequel. 

Theorem 9:If N is normal subgroup of   and A is a  -module, then there is 

an exact sequence 

1 1 1 / 2 20 ( / , ) ( , ) ( , ) ( / , ) ( , ).N N NH N A H A H N A H N A H A          

Moreover, if ( , ) 0 for 1 ,iH N A i q   there is an exact sequence 

/ 1 10 ( / , ) ( . ) ( , ) ( / , ) ( , ).q N q q N q N qH N A H A H N A H N A H A            

Proof: Let U be the category of  -modules and B the category of / N 

modules: define :G U B  by ( ,)
N

G Hom Z  and : AbF B  by 

/
Hom ( ,).

N
F Z


  It is clear that G and F, being Hom’s, are left exact. 
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 If E is an injective module, we claim is /NGE E N  -injective 

(hence right F-acyclic). Consider the diagram 

    0   
NE   E  

     t  f  

    0   
'M   M  

       i  

Where f and i are N maps. By change of rings ( / ),Z Z N  every 

/ moduleN  may be regarded as a  -module and every / N map may 

be regarded as a  -map. Since E is  -injective, there is a  -map 

:f M E extending f. But im : . ( ) ( . ) ( ),Nf E n f x f n x f x       since each 

x M is fixed by every .n N It follows that : Nf M E is a / N -map, and 
NE is / N -injective. 
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